AN14253

USB to CAN-FD Adapter based on MCXN Microcontroller
Rev. 1.0 — 16 April 2024

Application note

Document information
Information Content

Keywords AN14253, MCXN, MCXA, MCX_N9XX_EVK boards, MCX_N9XX_FDRM boards, Software

Development Kit (SDK)

Abstract This document describes two demo examples to build a USB to CAN-FD adapter using

MCX_N9XX_EVK and MCX_N9XX_FDRM boards.

https://www.nxp.com

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

1 Introduction

This application note provides two demo examples to build a USB to CAN-FD adapter where the USB
retransmits data to the CAN-bus and vice versa. It uses MCX_N9XX_ EVK and MCX_N9XX FDRM boards for
the demo. NXP MCXN devices have a high-speed (HS) USB port and CAN-FD controllers. HS USB can reach
up to 480 Mbit/s transmission speed, which is enough for transmitting CAN-FD frame at highest CAN baud rate
on MCXN 8 Mbit/s.

To make the system easy to use and compatible with other devices, the examples use USB CDC virtual COM
port for communication. A Python GUI is used to display the CAN-FD information in ASCII format.

2 CAN-FD

CAN-FD is defined in the international standard ISO 11898-1:2015. This section introduces the key features of
CAN-FD for the users who are familiar with using CAN. For more information about using CAN, visit the URL:
community.nxp.com/CAN.

2.1 Differences between CAN and CAN-FD

There are two key differences between classical CAN and CAN-FD. The first is that CAN-FD can use higher bit
rates than classical CAN. Classical CAN is limited to 1 Mbit/s. CAN-FD does not have a theoretical limit, but in
practice it is limited by the transceivers. The second key difference is the increased amount of data per CAN
message. Classical CAN is limited to 8 data bytes. CAN-FD limit is 64 data bytes per message, which is an
eight-fold increase from the CAN limit. With the increased amount of data per CAN message, CAN-FD frames
need higher bit rate to decrease the delay time in the communication and increase real-time performance. The
CAN-FD frames can reach higher bit rates by enabling the bit rate switch feature. On the other hand, though the
bit rate is higher, the bit time is shorter. To enable a data phase bit time that is even shorter than the transmitter
delay, delay compensation is introduced. Without transmitter delay compensation, the bit rate in the data phase
of a CAN-FD frame is limited by the transmitter delay.

Single Birate Up to 1Mbps (typ.500 kbps)

I
T L . TS
Classical CAN 8 Pyl 1l Data Field - Max 8 bytes 8
T o . ' . T
CAN-FD g Falnhue: i1l Original 8 bytes Data Field - Max 64 bytes o
L | I | |
Arbitration Bitrate Data Phase Bitrate Arbitration
Up to 1Mbps (typ.500 kbps) Up to 1Mbps (typ. 3 Mbps) Bitrate

Figure 1. CAN-FD versus CAN frames

3 USB CDC class driver

The USB Communications Device Class (or USB CDC) is a composite Universal Serial Bus device class. The
class includes several interfaces, such as custom control interfaces, data interfaces, audio, or mass storage-
related interfaces. In such cases, a USB interface can be used to implement the function of the Virtual COM
Port (VCOM). The VCOM port on the PC helps perform communication between the PC and the embedded
system. More information about USB can be obtained via the URL: USB basic training.

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 16 April 2024

2/15

https://community.nxp.com/t5/Blog/101-Controller-Area-Network-CAN-standard/ba-p/1217054
https://www.nxp.com/docs/en/supporting-information/Universal-Serial-Bus-Training.pdf

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

4 Demo implementation

4.1 Overview

USB CDC uses two USB physical buck endpoints to transfer data between PC and MCU. Each endpoint is
responsible for uni-directional data transfer.

The example uses two buffers for each pipe. One is used for communication between USB to CAN-FD bus and
the other for CAN-FD bus to USB. Once data is on MCU, it is responsible to use the information obtained to
create the CAN-FD frame and send it and in the opposite direction. The MCU receives the CAN-FD frame and
then extracts the data from the frame to send it using the USB CDC to the PC.

4.2 Related SDK examples

To implement the steps listed in this application note, users must have the preliminary knowledge of USB CDC
and CAN-FD usage. Both the below examples are available in the MCXN SDK:

* mcxn9xxevk flexcan_interrupt_ transfer example:
The FlexCAN interrupt example shows how to use the FlexCAN driver in a non-blocking interrupt way.

In this example, 2 boards are connected through a CAN bus. Endpoint A (board A) sends a CAN message

to Endpoint B (board B) when the user presses any key in the terminal. Endpoint B receives the message,
prints the message content to the terminal, and echoes back the message. Endpoint A increases the received
message and waits for the next transmission of the user to be initiated.

* mcxn9xxevk _dev_cdc_vcom_ bm example:

The Virtual COM project is a simple demonstration program based on the SDK. It is enumerated as a COM port,
which the users can open using terminal tools, such as Teraterm. The demo echoes back any character that
that it receives. The purpose of this demo is to show how to build a device of USB CDC class and to provide a
simple project for further development.

Both examples can be imported from the MCXN SDK available at the URL: Welcome | MCUXpresso SDK
Builder (nxp.com). Users must be familiar with the above two examples before further reading. Those two
examples are the building blocks for the USB-CAN adapter design.

4.3 Hardware

The examples described in this Application Note use the MCX_N9XX_EVK and MCX_N9XX_FDRM boards.
These boards have the USB PHY and the CAN transceiver available for use without any hardware rework
required in the boards. The appropriate hardware to use must be selected in the board.h file using the below
macros:

/*! Qbrief the board name */
#define MCX NO9XX EVK (1U)
#define MCX N9XX_FRDM (2U)

#define BOARD NAME MCX N9XX EVK

4.3.1 MCX-N9XX-EVK board
Table 1 shows the GPIO pin functions used for the USB-CAN adapter example on MCX-N9XX-EVK board.

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 16 April 2024

3/15

https://mcuxpresso.nxp.com/en/welcome
https://mcuxpresso.nxp.com/en/welcome

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

Table 1. GPIO pins used in USB-CAN adapter on MCX-N9XX-EVK board

Function GPIO Description

CANO_TX P1_18 CAN bus transmission signal
CANO_RX P1_19 CAN bus reception signal
USB1_DM USB1_DM HS USB DM

USB1_DP uUsSB1_DP HS USB DP

UART_RXD P1_8 Debug UART RXD
UART_TXD P1_9 Debug UART TXD

4.3.2 MCX-N9XX-FRDM board
Table 2 shows the GPIO pin functions for the USB-CAN adapter example on MCX-N9XX-FRDM board.

Table 2. GPIO pins used in USB-CAN adapter on MCX-N9XX-FRDM board

Function GPIO Description

CANO_TX P1_10 CAN bus transmission signal
CANO_RX P1_11 CAN bus reception signal
UsB1_DM USB1_DM HS USB DM

USB1_DP uUsB1_DP HS USB DP

UART_RXD P1_8 Debug UART RXD
UART_TXD P1_9 Debug UART TXD

4.4 Software

The software is based on two BareMetal SDK examples: USB Device CDC VCOM and FlexCAN interrupt. Once
both of them are integrated, a simple serial protocol is adapted in the application on top of them. This protocol
enables conversion of CAN messages into ASCII serial messages that are sent over the USB Device CDC. In
the case of this example, the messages are sent to the python interface and vice versa.

Follow the steps listed below to create the USB to CAN project example:

Use mcxn9xxevk dev_cdc vcom bm as baseline.

Integrate mcxn9xxevk flexcan interrupt transfer demo.

Copy CAN TxD and RxD pin configurations into the pin mux.c file.

Integrate £1s flexcan driver to the project in the drivers folder.

Integrate the functions in flexcan interrupt transfer.cfile.

Create the adaptation layer were the CAN message is converted into serial message and vice versa

In USB callbacks (USB_DeviceCdcVcomCallback), identify where to process the received message to
convert into CAN message and send it.

8. In CAN callback, identify the reception complete message to know when to convert CAN frame into serial
message and send it using USB CDC.

NooakoN -~

The MCXN software example is available at: https://github.com/nxp-appcodehub/an-usb-to-can-adaptor-
mcxn947.

Figure 2 shows the high level block diagram design for this example.

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 16 April 2024

4/15

https://github.com/nxp-appcodehub/an-usb-to-can-adaptor-mcxn947
https://github.com/nxp-appcodehub/an-usb-to-can-adaptor-mcxn947

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

USB CAN Adapter based on serial commands

USB Device CDC VCOM
FlexCAN Interrupt

USB Device Stack Board Support

UART Driver INT Driver USB Driver FlexCAN Driver
CLK Driver OSA Driver PORT Driver MUX Driver

Microcontroller Hardware

Figure 2. Software block diagram

The main functions for the application are located in the files described in Table 3.

Table 3. CAN files

S.No|File name Description

1 can_interface.c File with all CAN related functions such as CAN send, CAN receive, and FlexCAN
initialization functions.

2 usb_cdc_vcom.c File with all USB related functions. Contains USB CDC send, USB CDC receive,
and USB initialization functions.

3 usb_to_can.c File that supports the serial protocol with reception inputs functions to parse the
messages.

4 usb_can_adapter.c File with the main function to call the initializations.

4.5 Serial command frames

The USB-CAN adapter registers as a virtual serial port on the host computer. To provide an easy human
interaction with the interface, the CAN commands are received in the Python interface as ASCII characters.
Similarly, the interface sends ASCII commands that are converted into CAN commands before being sent.

For this purpose, the frames must be created in the specific format displayed in Table 4.

Table 4. Frame format
FD ID Frame Start CAN ID DLC Data

2 characters 1 character 3 characters 1 character 2 to 128 characters depending on DLC

* FD ID: Characters “FD” to identify if the frame is CAN-FD or not.

* Frame Start: ACIl character ‘s’ or ‘S’ use to identify the start of CAN frame.

* CAN ID: 3 characters with valid values from “0 to 9” or “A to F” that corresponds to the hexadecimal value of
the real CAN ID.

* DLC: A single character. Valid DLC options are listed in Table 5.

Table 5. Valid DLC options

DLC value Byte length Number of characters
1 1 2
2 2 4
AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 16 April 2024

5/15

NXP Semiconductors

AN14253

Table 5. Valid DLC options...continued

USB to CAN-FD Adapter based on MCXN Microcontroller

DLC value Byte length Number of characters
3 3 6
4 4 8
5 5 10
6 6 12
7 7 14
8 8 16
10 16 32
13 32 64
15 64 128

» Data: 2 to 128 characters with valid values from “0 to 9” or “A to F” that corresponds to the hexadecimal value
in the CAN Frame.

An example of the frame format below is described in Table 6.

Frame example: FDs12381122334455667788

Table 6. Example of frame format

FD ID

Frame Start

CANID

DLC

Data

FD

S

123

1122334455667788

4.6 Python GUI Interface

Python is one of the programing languages that has developed much relevance in recent years. The community
has developed useful libraries and tools that allow process automation and interface development.

This example uses Python revision 3.10.10 along with the Tkinter module and the pySerial library. All these

tools are widely documented on the web and there are many good examples to take as a baseline. The code for
this example is included in the project in the python gui folder.

4.7 Interface description

Figure 3 shows the Python application GUI.

AN14253

All information provided in this document is subject to legal disclaimers.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 16 April 2024

6/15

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

Figure 3. Python interface GUI

¢

Port Com3 — CAN Baudrate 1000000 — CAN FD Baudrate 2000000 — Connect |
Tme(ms) | TwRx | Type | 0 | bLc | Data |

CAN Tx Information Section

CANID DLC Data e

[122 3 1122334455667788

Send

Port: This listbox allows you to select the COM port for your USB CDC board.

CAN Baudrate: Selects the arbitration phase baud rate.

CAN-FD Baudrate: Selects the data phase baud rate.

Connect button: Must be clicked once the port and baud rates are selected. This starts the serial
communication with our device.

CAN Tx Information Section: In this centre window, user is able to see the received and transmitted CAN
messages

FD: This checkbox allows to select either CAN or CAN-FD transmissions. This check box does not control the
microcontroller configuration, only the serial message to be transmitted through serial.

CAN ID: Select the CAN ID to send a message.

DLC: Indicates the DLC for the length data. In case that data length is not allowed it shows an error.

Data: Message to be transmitted. The length must be even numbers from 2 to 16, 32, 64, or 128 characters
accordingly the DLC description.

Send button:

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 16 April 2024

7115

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

5 Running the demo

The following examples demonstrate the use of the USB to CAN adapter to communicate with a CAN device or
to monitor a communication in a CAN network.

5.1 Direct communication

This example requires two boards. One board runs the USB to CAN adapter code and the other runs
mcxn9xxevk flexcan interrupt transfer demo.

Prepare the example:

* Connect a USB cable between J5 debug USB port to the PC host in both boards.

* Connect a USB cable between the PC host and the J27 USB device port on the board that will run the USB to
CAN code.

* Board to board CAN connections are described in Figure 4.

-

ISB Debug

USE Debug

CAN
Figure 4. Board to board CAN connections
Table 7. Serial Terminal after running the demo
Node A USB to CAN Node B CAN interrupt demo
Signal name Board location Signal name Board location
CANH J29-1 CANH J29-1

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 16 April 2024

8/15

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

Table 7. Serial Terminal after running the demo...continued

Node A USB to CAN Node B CAN interrupt demo
Signal name Board location Signal name Board location
CANL J29-2 CANL J29-2
GND J29-4 GND J29-4

* Download the example code to both the boards. One board must be programmed with the USB to CAN
adapter source code that comes along with this application note. The other board must be programmed with
the flexcan interrupt transfer demo imported directly from the MCXN9 SDK.

* From the board with the mcxn9xxevk flexcan interrupt transfer demo, open a serial terminal on
PC with the settings mentioned below:

— 115200 baud rate
— 8 data bits
— No parity
— One stop bit
— No flow control
* Either press the reset button on your board or launch the debugger in your IDE to begin running the demos.

Run the example:

1. Open the Python interface MCXUSBtoCAN GUI.py or MCXUSBtoCAN GUI.exe.

2. Select the COM that corresponds to the USB CDC.

3. In this example, the CAN Baud rate used is 1000000 and CAN-FD Baud rate is 2000000.

4. Click the Connect button.

5. Set the FD checkbox.

6. Onthe mcxn9xxevk flexcan interrupt transfer demo, select node A as the option.

7. Press any key on the serial terminal to send a CAN message.

8. Write the value 01 in Data section and click Send button.

9. Now, repeat steps 7 and 8. The mexn9xxevk_flexcan_interrupt_transfer demo waits in a loop after
sending a CAN message to receive a message and after receiving the message, it waits until a CAN
message is sent using the terminal.

YT
File Edit Setup Control Window Help
FLEXCAN Interrupt EXAMPLE ssscesacens
Message format: Standard <11 bit id>
Message buffer B used for Rx.
Message buffer 1 used for Tx.
Interrupt Mode: Enahled
Operation Mode: TH and R —> Mormal
Pleaze zelect local node az A or B:
: Node B should start first.
any key to trigger one—shot transmission
ID: Bx123, Rx MB data: Bx1l,. Time stamp: 46217
any key to trigger the next transmission?
ID: Bx123, Rx MB data: Bx1l,., Time stamp: 64235
any key to trigger the next transmission?
ID: Bx123, Rx MB data: Bx1l., Time stamp: 33384
key to trigger the next transmission?
AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 16 April 2024

9/15

NXP Semiconductors

AN14253

USB to CAN-FD Adapter based on MCXN Microcontroller

MCXUSBLoCAM_GUI v1.0

Port [€OMSS =i| CAN Baudrate 000000 =i CAN FD Baudrate | 2000000 =

- O X

Disconnect |

CAN Tx Information Section

Time(ms) | Tx/Rx [Type | 10 | bLC | Data |
0:03:02.690217 Rx FD 321 15 025503040506070809101112131415161718192021222324252627282930313233343336373930404142434445464743405051525354555657 5850606 1626364
0:0253.534189 Tk FD 123 15 010203040506070809101112131415161718192021222324252627282930313233343536373830404142434445464748495051 52535455 56575859606 1626364
0:01:38.130050 Rx D 321 15 025503040506070800
0:01:32.301856 Tx FD 123 8 (102030405060708
0:00:55.922015 R FD 321 15 025500
0:00:53.438035 Tk D 123 1 01
0:00:23.303840 Rx FD 321 15 (000

Figure 5. Python GUI interface after running the demo

¥ FD
CAN ID DLC Data
123 15 01020304050607080810111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061¢62 636‘3-]

Send

5.2 Monitoring the CAN network

This example demonstrates a CAN network with two or more devices. The objective is to monitor all the
traffic on the network. The example requires a MCX_N9XX_EVK or a MCX_N9XX_ FDRM board with the
USB to CAN adapter code connected to the network. This demonstration uses two NXP boards running the
can_interrupt_transfer demo in both boards as the CAN network.

Preparing the example:
1. Connect a USB cable between the J5 debug USB

port to the PC host on the board.

2. Connect a USB cable between the PC host and the J27 USB device port on the board.
3. CAN connections to the network is shown in Figure 6:

Table 8. Can connections: Node A USB to CAN

Signal Name Board Location
CANH J29-1
CANL J29-2
GND J29-4
AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 16 April 2024

10/15

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

USB Debug

v

UsB

CAN Metwork

| CAN Node 1 | CAN Node 2

Figure 6. CAN connections to the network
4. Download the example code to the board.

5. Either press the Reset button on your board or launch the debugger in your IDE to begin running the
demos.

Running the example

Open Python interface MCXUSBtoCAN GUI.py or MCXUSBtoCAN GUI.exe

Select the COM that corresponds to USB CDC.

This example uses the CAN Baud rate of 1000000 and CAN-FD Baud rate as 2000000.

Click the Connect button.

Set the FD checkbox.

Start transmitting data on the CAN network and check the CAN traffic displayed in the window section. See
Figure 7.

ok wbn

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 16 April 2024

111/15

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

MCHUSBtoCAM_GUI v1.0 - O X

Port [COMS# =i| CAN Baudrate 000000 = CAN FD Baudrate | 2000000 _.l Disconnect
Timefms) | ToRe | Type | D | Dic | Data |

0:01:47.941043 FD 123 15 055!

0:01:47.936044 Rx FD ER)| 15 055

0:01:44.933473 Rx FD 123 15 045

0:01:44.928473 Rx FD ER)| 15 045

0:01:42.854791 Rx FD 123 15 033

0:01:42.848791 Rx FD 321 15 033

0:01:40.423130 Rx FD 123 15 025

0:01:40417129 Rx FD 321 15 025!

0:01:36.806940 Rx FD 123 15 015

0:01:36.801939 Rx FD 321 15 03

0:01:27.879177 Rx FD 123 15

0:0:27.87177 Rx FD 321 15

CAN Tx Information Section

CAN ID DLC Data &l D

[123 3 1122334455667788
Send

Figure 7. Python Interface showing the CAN traffic on the network

6 Acronyms

Table 9 lists and explains the acronyms and abbreviations used in this document.

Table 9. Acronyms

Term Description

CAN Controller Area Network

CcbC Communications Device Class

CAN-FD CAN with Flexible Data-Rate

IDE Integrated Design Environment

MCU Microcontroller Unit

SDK Software Development Kit

USB Universal Serial Bus

VCOM port Virtual COM (communication) port
AN14253 Al information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 16 April 2024

12/15

NXP Semiconductors AN 1 4253

USB to CAN-FD Adapter based on MCXN Microcontroller

7 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8 Revision history

Table 10 lists the revisions made to this document.

Table 10. Revision history

Document ID Release date Description

AN14253 v.1.0 16 April 2024 Initial public release

AN14253 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.
Application note Rev. 1.0 — 16 April 2024

13/15

NXP Semiconductors

AN14253

USB to CAN-FD Adapter based on MCXN Microcontroller

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

AN14253

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.
MCX — is a trademark of NXP B.V.

© 2024 NXP B.V. All rights reserved.

Application note

Rev. 1.0 — 16 April 2024

14/15

mailto:PSIRT@nxp.com

NXP Semiconductors

AN14253

USB to CAN-FD Adapter based on MCXN Microcontroller

Contents
1 Introduction ... e 2
2 CAN-FD ... e 2
2.1 Differences between CAN and CAN-FD 2
3 USB CDC class driverccccceeeeeeececeverreerennnens 2
4 Demo implementationccccoovmrrreeiennnns 3
4.1 OVEIVIBW ...ttt 3
4.2 Related SDK examplesccccceveeeeeeeeeeeeiiiiinn, 3
4.3 Hardwareooovvvviiiiieeeeeeeeeeeeeeeee 3
4.3.1 MCX-NIXX-EVK boardcccoovvrvrriiiiieeeeeeeen, 3
4.3.2 MCX-NIOXX-FRDM boardcooevvevnrrrvnnnns 4
4.4 SOftWareoooovveeeeee e 4
4.5 Serial command framescccceeeeeeeieiiiiiiieiinnn. 5
4.6 Python GUI Interfaceccocceiiiiiiiiiiineee 6
4.7 Interface descriptioncccccoiiiiiieiiinie, 6
5 Running the demo ... 8
5.1 Direct communicationccccceeeeeeeeeiiiiiniieinn, 8
5.2 Monitoring the CAN networkccccoccoeeee. 10
6 ACIronNyms ... s 12
7 Note about the source code in the

document ... 13
8 Revision historycooiiiiiiiomiiiciieeeecces 13

Legal informationccccoooiiiiiiiiiieeee 14

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com

Date of release: 16 April 2024
Document identifier: AN14253

	1 Introduction
	2 CAN-FD
	2.1 Differences between CAN and CAN-FD

	3 USB CDC class driver
	4 Demo implementation
	4.1 Overview
	4.2 Related SDK examples
	4.3 Hardware
	4.3.1 MCX-N9XX-EVK board
	4.3.2 MCX-N9XX-FRDM board

	4.4 Software
	4.5 Serial command frames
	4.6 Python GUI Interface
	4.7 Interface description

	5 Running the demo
	5.1 Direct communication
	5.2 Monitoring the CAN network

	6 Acronyms
	7 Note about the source code in the document
	8 Revision history
	Legal information
	Contents

